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The application of Koopmans’ theorem is investigated within the context of the LCAO
interpretation of a general SCF formalism. An empirical criterion for the validity of the assump-
tion of identity of corresponding orbitals in the ion and parent system is discussed. Calcula-
tions on He, Li, Be and pyridine are reported.

Die Giiltigkeit von KoormaNs® Theorem 148t sich mittels eines verallgemeinerten SCF-
Formalismus priifen. Ein Kriterium fiir das Zutreffen der Annahme, einander entsprechende
Einteilchenzustinde in Atom und Tochter-Ton seien identisch, wird in diesem Zusammenhang
diskutiert. Die Rechnungen sind am Helium, Lithium, Beryllium und Pyridin durchgefiihrt
worden.

La validité du théoréme de Koormans dans un formalisme SCF général est étudiée au
cadre d’une interprétation LCAO. Un critére empirique pour I'identité des orbitales de I’ion
et du systéme pére correspondant est discuté. Nous rapportons des caleuls sur He, Li, Be et
pyridine.

Introduction

Before the introduction of the open-shell SCF formalism of RoorrAaN [10]
it was necessary, in LCAO calculations, to employ Koormans’ theorem [4] to
determine the ionization potentials of closed-shell systems, ¢. e., to equate the
ionization potential with the negative of the orbital energy of that orbital from
which the electron was removed. This is not an approximation in the theoretical
context if the corresponding orbitals of the ion and parent system are identical.
As an approximation to the experimental value it suffers much the sanme fate as
other calculated energy quantities.

Recently Fraca and Birss [3] have given the LCAO form of their SCF forma-
lism for a general system without restrictions on the number or symmetry of
open-shells. Due to its characteristics this theory is convenient for an investigation
of the basis of Koormans’ theorem [4] and the relation between a calculated
ionization potential, the corresponding orbital energy and the experimental
ionization potential.

The systems used in this investigation are the helium, lithium and beryllium
atoms and the pyridine molecule. Accurate SCF calculations are made upon the
atoms and their ions. In studying pyridine a SCF procedure is used and the
approximations due to Pariser and Parr [7] are introduced. The inethod
resembles one due to PoPLE [8]. Since one of the approximations introduced is
neglect of the overlap matrix between non-orthogonal basis set functions, we
investigate the effect of this assumption upon the atomic calculations in order to
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obtain some indication of the effect of the assumption alone upon an investigation
of the basis of KooPMaNs’ theorem and related matters.

The SCF Equations
The operator proposed by Birss and F'raga [1] is:
Rue = Xp pi®,
= g ot | P — S0 ol <l | 1 L™ <ol | +
+ ™ Lo | T | o™ <ol — 2o oD <ot | i | > <o | +
+ (P ™ <o
where the superscripts uo indicate that the k, I summations are to be taken over

occupied orbitals bearing the symmetry designation x (species) and « (subspecies).
The Hartree-Fock operators are defined by:

Fre — f%[H+Zlf717v+ Emy,ﬁ¢ocf;n‘l1;£

in which f§ is the fractional occupancy of the % shell of symmetry designation
u, H is the one-electron operator containing the kinetic and nuclear potential
terms and the operators I/, I'? are defined by:

I = 20 T — b K3

The J and K operators are the coulomb and exchange operators; the ¢ and b are
parameters related to the particular state of the configuration under considera-
tion.

The operator R** has as eigenfunctions all occupied orbitals bearing symmetry
designation u«, regardless of their occurrence in open- or closed-shells:

R gl = 05 i
The eigenvalue 057 is related to the orbital energy, #;* by:
ne = Ol
The LCAO form of the eigenvalue equation is the matrix equation:
R Cy = 017 §**C .

The column vector €% contains the linear expansion coefficients arising from the
LCAO expansion of orbital gi*:

e = 2Zppp Oy = 1 C

where y# is a row vector whose components are the basis set functions y,*. The
matrix R** has the elements:

Ry = | R

1w -

857 =" L™ -
Further expansion of the matrix R** in terms of matrices involving the vector
C% and the elements:

Similarily:

Fil oy = <5 | PR 120
may be found in reference [3].
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Accurate Atomie Caleulations

Calculations were performed upon the systems He, He*, Li, Li*, Be, Be* using
as basis set functions the 1s, 2s and 3s Slater orbitals. The orbital exponents
chosen are given in Tab. 1, identical exponents being used for the ion and its
parent system. A programme was prepared for the IBM 1620 computer which
calculated the constituent integrals and matrices and carried out the SCF calcula-
tion. The criterion for self-consistency was agreement of two successive sets of
linear coefficients to five decimal places. The results of the caloulations are dis-
played in Tab. 2, along with derived quantities and the experimental ionization
energy. The SCF coefficients are given in Tab. 1.

Table 1
Orbital exponents, ¢ and linear coeffictents (Ci) for occupied orbitals in accurate atomic-
calculations
Slater Orbital
System
1s 2s 3s
He* Ci1s 1.00 0.00 0.00
He s 0.95 0.16 0.01
2% 2.000 0.575 0.100
Lit C1s 1.00 -0.02 -0.01
Li C1s 1.01 —0.04 -0.01
Cas -0.12 1.02 0.00
{u 2.700 0.650 0.300
Bet C1s 1.00 -0.02 0.00
Cas -0.18 1.03 -0.04
Be C1s 1.00 -0.01 0.00
O35 -0.20 1.02 -0.02
{ e 3.700 0.975 0.300

These results can be examined from two points of view: with regard to the
accuracy of prediction of experimental ionization potentials by the calculated
value; second, as an indication of the validity of the application of Koormans’
theorem.

The percentage errors in the calculated ionization potentials compared to
experimental are: He 13%,; Li 2%,; Be 10%,, the experimental value always being
larger. This is the degree of accuracy one has come to expect in such calculations
due mainly to the neglect of the correlation energy and, perhaps, in the present
calculation, the non-optimum values of the orbital exponents. The relative dis-
crepancies are what one would expect from a consideration of correlation effects.
The main contribution to correlation energy is from electron pairs in the same
orbital [11]. No orbital pair correlations are greatly disturbed in the ionization
of lithium whereas in helimmn and beryllium the 1s and 2s electron pair correlations
are removed upon ionization. The inclusion of correlation energy would lower the
state energies of the lithium atom and ion by approximately equal amounts;
the atom state energies of the other systems would be lowered considerably more
than the corresponding ion energies.

In considering the validity of the application of KooPmaxs’ theorem as a
means of calculating ionization potentials, one can investigate the basic assump-
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tion of identical corresponding orbitals in the ion and its parent system. Examina-
tion of the linear coefficients in Tab. 1 does not reveal any startling differences
although the identity of corresponding orbitals is more closely approached in
progressing along the sequence, helium, lithium, beryllium.

As a further criterion we have shown in Tab. 2 the difference between the
ionization potential, determined from the calculated energies of ion and parent,
and the highest occupied orbital energy. In the last column of the table the per-
cent contribution of the highest orbital energy to the total calculated energy is

Table 2
Total electronic energy (E), calculated ionization potential (I.), highest orbital energy (E.),
experimental energy and related quantities for accurate atomic calculations. Hartree units are used

System B I. E, Expt. ‘ E,+ 1. % %

[

Het ~2.000 ’ ,

He ~2.787 ~0.787 —0.824 0.903 —0.037 33

Li+ ~17.224 | |

Li —7.418 0.194 —0.198 0.198 —0.004 3

Bet+ —14.247 i ‘ J

Be -14.556 0.309 ‘ -0.312 0342 -0.003 2

displayed. There is a strong correlation between these quantities. Hence it appears
that the approximation will become more accurate the larger the system and, in
fact, even with a system as small as beryllium the approximation is already quite
good. ‘

It is interesting to note that, even though the basis of KoormaNs’ theorem is
not strictly valid, 4. e., corresponding orbitals in related systems are not identical,
the highest orbital energy is nevertheless a better approximation to the true
ionization potential than the caleulated ionization potential.

The Approximation of Neglect of Overlap

In many applications of the LCAO MO technique the overlap between mem-
bers of a non-orthogonal basis set is neglected. Although some justification of this
assumption can be given [2], it can be shown that a true Hartree-Fock SCF
caleulation is not being performed when it is used.

The correct matrix eigenvalue equations for a set of non-orthogonal basis
functions is:

R*“Cl = 04 8™ CY
or, for a closed-shell system in the equivalent form given by RooTraaw [9]:
F C]c = &k SC k -

If the basis functions are now taken to be orthogonal and the same one- and two-
electron integrals are retained in the formation of the matrix F (or, Ru=), one has:

FCy,=¢,Cy .
These equations would be equivalent if:
MFM=F



190 F. W. Birss and W. G. LAiDrAW:

where M is the matrix such that:
MiSM =1,
the unit matrix.
Rooruaaw [9] has shown that Fis invariant only under an unitary transforma-
tion; but, since one can rewrite the latter equation as:

S=MMH?
which becomes, if M is unitary:
S=I1=1I,

the requirement that M shall be unitary implies that § must be the unit matrix.
Thus the matrix F is invariant under the given unitary transformation only if the
basis functions upon which it is based are orthogonal. Thus the matrix F defined
in terms of non-orthogonal basis functions whose corresponding overlap matrix
is assumed to be the unit matrix is not a proper representation of the Hartree-Fock
operator.

Atomic Caleulations with Negleet of Overlap

In these calculations the basis set was the same as that used in the accurate
calculations. The linear coefficients are given in Tab. 3, the total energies and
related quantities are given in Tab. 4.

Table 3
Linear coefficients (Cr) for occupied orbitals in the atomic calculations with neglect of overlap
Slater Orbital
System

1s 28 3s
Het Cis 0.96 0.27 0.00
He Cis 0.93 0.37 0.00
Li* C1s i 0.98 021 0.02
Li C1s 0.97 0.25 0.04
Cas -0.24 0.83 0.50
Bet Cis 0.98 0.18 0.00
Cas -0.18 0.95 0.24
Be Cis 0.98 0.20 0.00
Oss ! -0.19 0.94 0.28

Table 4

Total electronic energy (E ), calculated ionization potential (I.), highest orbital energy (H.) for
the atomic calculations with neglect of overlap, Hartree units are used

System E ’ I, E, [‘ Expt. E,+ 1.
\
Het —2.125 ‘
He —2.98C 0.855 —0.877 0.903 -0.022
Lit —7.437
Li —7.622 0.185 -0.198 ‘ 0.198 -0.013
Bet —14.725 : |
Be ‘ —15.000 0.275 ‘ -0.27 ‘ 0.342 0.004
| |

Comparison of the coefficients with those in Tab. 1 shows that the approach to
identity of the corresponding orbitals of ion and parent are very similar in the
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two sets of calculations; further, the various quantities given in Tab. 4 exhibit
the same trends as those for the accurate atomic calculations. It may be concluded
that, although the total energies are no longer reliable, comparisons between the
ion and parent states, which is the basis of the test of Koormans’ theorem, are
still reliable.

Caleculations on the st System of Pyridine
The & molecular orbitals were expanded in terms of symmetry functions
constructed as linear combinations of atomic 2px orbitals. (It should be noted
that this is a necessary step in the formalism of the R operator since the symmetry
characteristics of the molecular orbitals are used to ensure orthogonality between
orbitals of different symmetry designation.) Numbering the centres consecutively
from the nitrogen atom as centre 1, the basis functions are:

1
X%h:ﬁ@pxz‘f‘szs) > X3Bl:2px4 ;
1

18t = g Qpm - 2pm) 5 gt = 2w
1 1
it = 73 (2P%s — 2pag) 2= vz (2 pes — 2 p)

The superscripts B, 4, indicate the irreducible representation of the group Cyy to
which the function serves as a basis.

The integrals over these basis functions were calculated in terms of the atomic
integrals tabulated in Tab. 5 and 6. These were calculated from data given in the

Table 5
Core integrals for the pyridine calculation. The upper triangle of a symmetric matriz is displayed,
with entries:
Cij=— { 2px: | Heore | 220157 )
Electron volts are used

4
46.04 ! 2.58 | - ’ - — 2.58
| 4202 \ 2.40 | - - —~
‘ 41,78 2.40 - -
‘ 4.7 2.40 -
‘ ’ 41.78 2.40
J 42,02

Table 6
Two-electron integrals for the pyridine calculation. The wpper triangle of a symmetric matriz is
displayed with entry Jii, 53, 1n the (1, §) position: Electron volts are used

5.60 «‘ 4.97 5.60 7.68

12.30 7.68
10.50 \ 7.30 : 5.46 4,90 5.46
| 10.50 7.30 5.46 4.90
f 10.50 7.30 i 5.46
[ o050 7.30
| | 3 10.50

literature [6]. That these may or may not be the best values is not in question; it
is sufficient for our purpose that they be typical of those used in PARISER-PARR
type calculations.
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The results of the SCF calculations upon pyridine and its positive ion are given
in Tab. 7. The difference in energy between the ion and parent was 0.424 Har-
trees, identical to the negative of the highest occupied orbital energy. This agree-

Table 7
Linear Coefficients (C}) for the pyridine molecule and fon molecular orbitals

Basis Function
System

X1 X2 Xa Xa
C,H,N 5 0.57 0.52 0.32 0.53
CyB1 -0.27 0.49 0.58 -0.59

Ci42 0.69 0.73 - —
C,H N+ C5 0.57 0.49 0.35 0.57
C,B1 -0.25 0.51 0.60 -0.56

Cy4s 0.69 0.72 - -

ment is reflected in the near-identity of the corresponding orbitals of the two
systems. It is further confirmation of the hypothesis that the basis of Koormaxs’
theorem is valid when the contribution of the orbital energy for the ionized elec-
tron is a small fraction of the total electronic energy of the parent system.
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